首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4741篇
  免费   439篇
  国内免费   4篇
  2022年   12篇
  2021年   74篇
  2020年   26篇
  2019年   39篇
  2018年   63篇
  2017年   48篇
  2016年   113篇
  2015年   242篇
  2014年   250篇
  2013年   313篇
  2012年   435篇
  2011年   379篇
  2010年   203篇
  2009年   177篇
  2008年   236篇
  2007年   244篇
  2006年   232篇
  2005年   213篇
  2004年   198篇
  2003年   171篇
  2002年   162篇
  2001年   148篇
  2000年   136篇
  1999年   108篇
  1998年   53篇
  1997年   39篇
  1996年   40篇
  1995年   30篇
  1994年   30篇
  1993年   31篇
  1992年   69篇
  1991年   70篇
  1990年   59篇
  1989年   61篇
  1988年   58篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   31篇
  1983年   22篇
  1982年   14篇
  1981年   17篇
  1979年   27篇
  1978年   23篇
  1977年   14篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
  1972年   11篇
排序方式: 共有5184条查询结果,搜索用时 171 毫秒
11.
Nitric oxide synthase (NOS) generates nitric oxide (NO*) by the oxidation of l-arginine. Spin trapping in combination with electron paramagnetic resonance (EPR) spectroscopy using ferro-chelates is considered one of the best methods to detect NO* in real time and at its site of generation. The spin trapping of NO* from isolated NOS I oxidation of L-arginine by ferro-N-dithiocarboxysarcosine (Fe(DTCS)2) and ferro-N-methyl-d-glucamide dithiocarbamate (Fe(MGD)2) in different buffers was investigated. We detected NO-Fe(DTCS)2, a nitrosyl complex, resulting from the reaction of NO* and Fe(DTCS)2, in phosphate buffer. However, Hepes and Tris buffers did not allow formation of NO-Fe(DTCS)2. Instead, both of these buffers reacted with Fe2+, generating sparingly soluble complexes in the absence of molecular oxygen. Fe(DTCS)2 and Fe(MGD)2 were found to inhibit, to a small degree, NOS I activity with a greater effect observed with Fe(MGD)2. In contrast, Fe(MGD)2 was more efficient at spin trapping NO* from the lipopolysaccharide-activated macrophage cell line RAW264.7 than was Fe(DTCS)2. Data suggested that Fe(DTCS)2 and Fe(MGD)2 are efficient at spin trapping NO* but their maximal efficiency may be affected by experimental conditions.  相似文献   
12.
Summary A model for uncoupled glucose uptake under energy-sufficient conditions is presented. The model is derived from glucose catabolic pathways. The resulting model predicts specific glucose uptake rate as a function of both growth rate and extracellular glucose concentration. This prediction is consistent with reported literature data.  相似文献   
13.
The chemical reaction of cleavaging territrem B to give 3,4,5-trimethoxy benzoic acid by alkaline hydrogen peroxide was investigated. The method was applied for confirmation of the chemical structure of the aromatic moiety of territrem A, A’, B, and B’. The physicochemical properties of the aromatic cleavage product of territrem Aindicated the structure as 3,4-methylendioxy, 5-methoxy benzoic acid (or 4-methoxy, 6-carboxy, 1, 3-benzodioxole). The experiment also gave the evidences that territrem A and A’, on the other hand territrem B and B’ have the identical aromatic moieties on their structures.  相似文献   
14.
Corticotropin-releasing factor (CRF) and both human pancreatic growth hormone-releasing factor (hp-GRF) and rat hypothalamic GRF (rh-GRF) stimulated ACTH release from neoplastic AtT-20 mouse pituitary tumor cells in a dose-dependent fashion, with CRF inducing a 10-fold increase and GRF a maximal increment of approximately one-half that of CRF. Neither rh-GRF nor hp-GRF induced ACTH release in normal anterior pituitary cells. Pretreatment with either dexamethasone or somatostatin prior to the addition of rh-GRF inhibited the increase in ACTH release. Both ovine CRF and rh-GRF stimulated adenosine 3,5-monophosphate production in AtT-20 cells. The weak but clearly discernible effect of GRF on ACTH release from AtT-20 cells may be due to an abnormality in the AtT-20 cell receptor.  相似文献   
15.
Nitroreductase activity of heart lipoamide dehydrogenase.   总被引:1,自引:1,他引:0       下载免费PDF全文
A novel reaction catalysed by lipoamide dehydrogenase is described. In the presence of NADH, lipoamide dehydrogenase reduces the nitro group of 4-nitropyridine and 4-nitropyridine N-oxide. The elution profiles from a DEAE-cellulose column for the dehydrogenase and nitroreductase activities are identical. Chemical modifications of critical amino acid residues suggest that the two activities share a common catalytic domain. Nitro reduction catalysed by lipoamide dehydrogenase was monitored spectrophotometrically and chromatographically. The major product from the enzymic reduction of 4-nitropyridine was isolated and characterized structurally as NN-bis(pyridinyl)hydroxylamine, which is formed presumably via 4-hydroxyaminopyridine in a four-electron redox reaction.  相似文献   
16.
We have examined the optical, magnetic circular dichroism, and electron paramagnetic resonance (EPR) spectra of pure ovine prostaglandin H synthase in its resting (ferric) and ferrous states and after addition of hydrogen peroxide or 15-hydroperoxyeicosatetraenoic acid. In resting synthase, the distribution of heme between high- and low-spin forms was temperature-dependent: 20% of the heme was low-spin at room temperature whereas 50% was low-spin at 12 K. Two histidine residues were coordinated to the heme iron in the low-spin species. Anaerobic reduction of the synthase with dithionite produced a high-spin ferrous species that had no EPR signals. Upon reaction with the resting synthase, both hydroperoxides quickly generated intense (20-40% of the synthase heme) and complex EPR signals around g = 2 that were accompanied by corresponding decreases in the intensity of the signals from ferric heme at g = 3 and g = 6. The signal generated by HOOH had a doublet at g = 2.003, split by 22 G, superimposed on a broad component with a peak at g = 2.085 and a trough at g = 1.95. The lipid hydroperoxide generated a singlet at g = 2.003, with a linewidth of 25 G, superimposed on a broad background with a peak at g = 2.095 and a trough around g = 1.9. These EPR signals induced by hydroperoxide may reflect synthase heme in the ferryl state complexed with a free radical derived from hydroperoxide or fragments of hydroperoxide.  相似文献   
17.
18.
A new gel filtration method was developed for purification of R-type lipopolysaccharides (lipooligosaccharides) from some nonenteric gram-negative bacteria, including Neisseria meningitidis, Haemophilus influenzae, and Bordetella pertussis. These wild-type lipooligosaccharides are poorly extractable by the phenol-chloroform-ether extraction method of C. Galanos, O. Luderitz, and O. Westphal [1969) Eur. J. Biochem. 9, 245-249) and therefore a new procedure was developed for their isolation. The lipooligosaccharides (LOS) were first extracted by hot phenol-water, treated with RNase, then disaggregated in deoxycholic acid, and purified by gel filtration on Sephadex G-75. By comparison the conventional hot phenol-water purification method using repeated ultracentrifugations yielded less LOS. The yield of LOS by gel filtration was 30 to 108% higher and the purity was better.  相似文献   
19.
Acriflavine-generated mutants of Streptococcus lactis 7962 with various combinations of plasmid molecular masses were screened for nisin production. Nisin was produced by both the wild type and mutants that contained a 17.5-megadalton plasmid, which was obscured by chromosomal fragments. No nisin was produced by plasmid-free mutants. Sucrose fermentation and nisin production were simultaneously expressed. A transconjugant obtained from nisin-producing donor S. lactis 7962 and recipient Leuconostoc dextranicum 181 was a "supernisin" producer. The L. dextranicum Nis+ transconjugant was resistant to S. lactis 7962 phage and vancomycin (greater than 1,000 micrograms/ml), and it contained an extra 17.5-megadalton plasmid.  相似文献   
20.
Yeast glutathione reductase exists in a single molecular form which exhibits preferred NADPH and weak NADH linked multifunctional activities. Kinetic parameters for the NADPH and NADH linked reductase, transhydrogenase, electron transferase and diaphorase reactions have been determined. The functional preference for the NADPH linked reductase reaction is kinetically related to the high catalytic efficiency and low dissociation constants for substrates. NADP+ and NAD+ may interact with two different sites or different kinetic forms of the enzyme. The active site disulfide and histidine are required for the reductase activity but are not essential to the transhydrogenase, electron transferase and diaphorase activities. Amidation of carboxyl groups and Co(II) chelation of glutathione reductase facilitate the electron transferase reaction presumably by encouraging the formation of an anionic flavosemiquinone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号